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Abstract

We present a general model-independent approach to the analysis of data in cases
when these data do not appear in the form of co-occurrence of two variablesX,Y ,
but rather as a sample of values of an unknown (stochastic) functionZ(X,Y ). For
example, in gene expression data, the expression levelZ is a function of geneX
and conditionY ; or in movie ratings data the ratingZ is a function of viewerX
and movieY . The approach represents a consistent extension of the Information
Bottleneck method that has previously relied on the availability of co-occurrence
statistics. By altering the relevance variable we eliminate the need in the sample of
joint distribution of all input variables. This new formulation also enables simple
MDL-like model complexity control and prediction of missing values ofZ. The
approach is analyzed and shown to be on a par with the best known clustering
algorithms for a wide range of domains. For the prediction ofmissing values
(collaborative filtering) it improves the currently best known results.

1 Introduction

In the situation of information explosion that characterizes todays world, the need for automatic tools
for data analysis is more than obvious. Here, we focus on an unsupervised analysis of data that can be
organized in matrix form. Clearly, this broad definition covers various types of data. For instance, in
text analysis data, the rows of a matrix correspond to words,the columns to different documents, and
entries indicate the number of occurrences of a particular word in a specific document. In a matrix
of gene expression data, rows correspond to genes, columns to various experimental conditions,
and entries indicate expression levels of given genes in given conditions. In movie rating data,
rows correspond to viewers, columns to movies, and entries indicate ratings made by the viewers.
Finally, for financial data, rows correspond to stocks, columns to different time points, and each
entry indicates a price change of a particular stock at a given time point.

While the text analysis case is a classical example of co-occurrence data, the remaining examples
are not naturally interpreted that way. Typically, a normalized words-documents table is used as
an estimator of a words-documents joint probability distribution, where each entry estimates the
probability of finding a given word in a given document, whereas the words are assumed to be inde-
pendent of each other [1, 2]. By contrast, values in a financial data matrix are a general function of
stocks and days and in particular might include negative numerical values. Here, the data cannot be
regarded as a sample from a joint probability distribution of stocks and days, even if a normalization
is applied. Though it can be argued that each entry of the matrix is a sample from a joint probability
distribution of three variables: stock, day, and price change - the degenerate nature of this sample
must be taken into account: the rate change of a given stock ona given day occurs only once and no
statistics exist. Therefore the joint probability distribution of the three variables cannot be estimated



by direct sampling. A similar argument applies to survey data like movie ratings. In this case the
sample might be even more degenerate, with many “missing values”, since not all the viewers rate
all the movies. Although gene expression data can be considered as a repeatable experiment, very
often different experimental conditions correspond to only one single column in the matrix. Thus
once again a single data point represents the joint statistics of three variables: gene, condition, and
expression level.

Nevertheless, in most such cases there is a statistical relationship within rows and/or within columns
of a matrix. For instance, people with similar interests typically give similar ratings to movies
and movies with similar characteristics give rise to similar rating profiles. Such relationships can be
exploited by clustering algorithms that group together similar rows and/or columns, and furthermore
make it possible to complete the missing entries in the matrix [3].

The existing clustering techniques can be classified into three major categories. (i) Similarity, or
distance-based methods, require a pre-defined similarity measure that can be applied to all data
points and possibly to new points as well. The nature of the distance measure is crucial to these
techniques and inherently requires expert knowledge of theapplication domain, which is often un-
available. (ii) Generative modeling techniques in which a specific class of statistical models is
chosen to describe the data. As before, ana priori choice of an appropriate model is far from ob-
vious for most real world applications. (iii) An alternative line of study, relevant to our work, is the
Information Bottleneck (IB) approach [4] and its extensions. Instead of defining the clustering ob-
jective through a distortion measure or data generation process, the approach suggests using relevant
variables. A tradeoff between compression of the irrelevant and prediction of the relevant variables
is then optimized using information theoretic principles.Importantly, the definition of the relevant
variable is often natural and obvious for the task at hand, and in turn the method yields the optimal
relevant distortion for the problem.

Since the original work in [4], multiple studies have highlighted the theoretical and practical im-
portance of the IB method, in particular in the context of cluster analysis [2, 5, 6, 7, 8]. However,
the original formulation is based on the availability of co-occurrence data. In practice a given co-
occurrence table is treated as a finite sample out of a joint distribution of the variables; namely
row and column indices. Unfortunately, as mentioned above,this assumption does do not fit many
realistic datasets, thus preventing a direct application of the IB approach in various domains.

To address this issue, in [9] a random walk over the data points is defined, serving to transform
non co-occurrence data into a transition probability matrix that can be further analyzed via an IB
algorithm. In a more recent work [10] the suggestion is made to use the mutual information between
different data points as part of a general information-theoretic treatment to the clustering problem.
The resulting algorithm, termed theIclust algorithm, was demonstrated to be superior or comparable
to 18 other commonly used clustering techniques over a wide range of applications where the input
data cannot be interpreted as co-occurrences [10]. However, both of the approaches have limitations
– Iclust requires a sufficient amount of columns in the matrix for reliable estimation of the informa-
tion relations between rows, and the Markovian Relaxation algorithm involves various non-trivial
steps in the data pre-process [9].

Here, we suggest an alternative approach, inspired by themultivariate IB framework [8]. The mul-
tivariate IB principle expands the original IB work to handle situations where multiple systems of
clusters are constructed simultaneously with respect to different variables and the input data may
correspond to more than two variables. While the multivariate IB was originally proposed for co-
occurrence data, we argue here that this framework is rich enough to be rigorously applicable in
the new situation. The idea is simple and intuitive: we look for a compact grouping of rows and/or
columns such that the product space defined by the resulting clusters is maximally informative about
the matrix content, i.e. the matrix entries. We show that this problem can be posed and solved within
the original multivariate IB framework. The new choice of relevance variable eliminates the need
to know the joint distribution of all the input variables (which is inaccessible in all the applications
presented here). Moreover, when missing values are present, the analysis suggests an information
theoretic technique for their completion.

We explore the application of this approach to various domains. For gene expression data and finan-
cial data we obtain clusters of comparable quality (measured as coherence with manual labeling) to



those obtained by state-of-the-art methods [10]. For movierating matrix completion, performance
is superior to the best known alternatives in the collaborative filtering literature [11].

2 Theory

2.1 Problem Setting

We henceforth denote the rows of a matrix byX, the columns byY , and the matrix entries by
Z (and smallx, y and z for specific instances). The number of rows is denoted byn, and the
number of columns bym. We regardX andY as discrete coordinate space andZ(X,Y ) as a
function. Generalization to higher dimensions and continuous coordinates is readily possible, but
not discussed here. For a given matrix, a rowx, and a columny, the value ofz(x, y) is assumed to
be deterministic. This can be relaxed as well.

The objective is to find “good” partitions of theX-Y space that will be informative with respect
to the function valuesZ(X,Y ). The partitions are defined by grouping of rows into clustersof
rows C and grouping of columns into clusters of columnsD. The complexity of such partitions
is measured by the sum of the weighted mutual information valuesnI(X;C) + mI(Y ;D). For
the hard partitions considered in the paper this sum is the number of bits required to describe the
partition (see [12]). The informativeness of the partitionis measured by another mutual information,
I(C,D;Z). In these terms, the goal is to find minimally complex partitions that preserve a given
information level about the matrix valuesZ. This can be expressed via the minimization of the
following functional:

min
q(c|x),q(d|y)

nI(X;C) + mI(Y ;D) − βI(C,D;Z), (1)

whereq(c|x) is the mapping of rowsx to row clustersc, q(d|y) is the mapping of columnsy to
column clustersd, andβ is a Lagrange multiplier controlling the tradeoff between compression and
accuracy.

We first derive the relations between the quantities in the above optimization problem and then
describe a sequential algorithm for its minimization. We will stick to the following notation con-
ventions: p is used for distributions that involve only input parameters and hence do not change
during the analysis,̂p is used for empirical distributions,q for the sought mapping distributions and
q̂ for empirical distributions dependent on the sought mappings. By the definition of the mutual
information [12]:

I(X;C) =
∑

x,c

p(x)q(c|x) log
q(c|x)

q(c)
≈

∑

x,c

p̂(x)q(c|x) log
q(c|x)

q̂(c)
.

We define the indicator function:

1x,y =

{

1, if the entry (x, y) is present in the matrix
0, if the entry (x, y) is absent in the matrix

and denote the total number of populated entries (which is our sample size) by:N =
∑

x,y 1x,y.
Then:

p̂(x) =

∑

y 1x,y

N
=

Number of populated entries in row x

Total number of populated entries
,

q̂(c) =
∑

x

p̂(x)q(c|x),

I(Y ;D), p̂(y), andq̂(d) are defined similarly.

I(C,D;Z) =
∑

c,d,z

q(c, d)q(z|c, d) log
q(z|c, d)

p(z)
≈

∑

c,d,z

q̂(c, d)q̂(z|c, d) log
q̂(z|c, d)

p̂(z)
.

We assumeZ is a categorical variable, thus:

p̂(z) =

∑

x,y:z(x,y)=z 1

N
=

Number of entries equal to z

Total number of populated entries
,



q̂(c, d) =

∑

x,y q(c|x)q(d|y)1x,y

N
=

Number of populated entries in section c, d

Total number of populated entries
,

q̂(z|c, d) =

∑

x,y:z(x,y)=z q(c|x)q(d|y)
∑

x,y q(c|x)q(d|y)1x,y

=
Number of entries equal to z in section c, d

Number of populated entries in section c, d
.

In the special case of complete data matrices1x,y is identically 1 and̂q(c, d) may be decomposed
as: q̂(c, d) = q̂(c)q̂(d). In additionp̂(x) andp̂(y) accept the form̂p(x) = 1

n
andp̂(y) = 1

m
. But in

the general case considered in this paperX andY (and thusC andD) are not independent.

2.2 Sequential Optimization

Given q(c|x) andq(d|y), one can calculate all the quantities defined above, and in particular the
minimization functionalLmin = nI(X;C)+mI(Y ;D)−βI(C,D;Z) defined in equation (1). To
minimizeLmin (using hard partitions) we can use the sequential (greedy) optimization algorithm
suggested in [13]. This algorithm is quite simple:

1. Start with a random (hard) partitionq(c|x), q(d|y).

2. Iteratively until convergence (no changes at step (b) aredone) traverse all rowsx and
columnsy of a matrix in a random order. For each row/column:

(a) Drawx (or y) from its cluster.
(b) Reassign it to a new clusterc∗ (or d∗), so thatLmin is minimized. The new cluster

may appear to be the old cluster, and then no change is counted.

Due to monotonic decrease inLmin, which is lower bounded by−βH(Z) the algorithm is guar-
anteed to converge to some local minima of (1). Multiple random initializations may be used to
improve the result. This simple algorithm is by far not the only way to optimize (1), but in practice
it was shown to achieve very good results on similar optimization problems [2].

The complexity of the algorithm is analyzed in the complementary material, where it is shown to be
O(M(n+m)|C||D|), whenM is the number of iterations required for convergence (usually 10-40)
and|C|, |D| are cardinalities of the corresponding variables.

2.3 Minimal Description Length (MDL) Formulation

The minimization functionalLmin has three free parameters that have to be externally determined:
the tradeoff (or resolution) parameterβ, and the cardinalities|C|, and|D|. Whereas in some ap-
plications they may be given (e.g. the desired number of clusters), there are cases when they also
require optimization (as in the example of matrix completion in the next section). To perform such
optimization, the Minimum Description Length (MDL) principle [14] is used. The idea behind MDL
is that models achieving better compression of the trainingdata - when the compression includes a
model description - also achieve better generalization on the test data.

The following compression scheme is defined:|C| row and|D| column clusters define|C||D| sec-
tions each getting roughly N

|C||D| samples. The corresponding distributionsq̂(z|c, d) over categorical

variableZ may be described by|Z||C||D|
2 log N

|C||D| bits (see [14]). As already mentioned, the ma-
trix partition itself may be described bynI(X;C)+mI(Y ;D) bits. And given the partition and the
distributionsq̂(z|c, d) the number of bits required to code the matrix entries isNH(Z|C,D) [12].
Thus the total description length isnI(X;C) + mI(Y ;D) + NH(Z|C,D) + |Z||C||D|

2 log N
|C||D| .

SinceH(Z|C,D) = H(Z) − I(C,D;Z) andH(Z) is constant the latter can be omitted from
optimization, which results in total minimization functional

Fmdl = nI(X;C) + mI(Y ;D) − NI(C,D;Z) +
|Z||C||D|

2
log

N

|C||D|
. (2)

Observe that constrained on|C|, and|D|, Lmin corresponding toFmdl accepts the form of

Lmin = nI(X;C) + mI(Y ;D) − NI(C,D;Z), (3)

i.e. the optimal tradeoffβ = N is uniquely determined. Since in practiceFmdl is roughly convex in
bothC andD, the optimal values for these two parameters may be easily determined by scanning.
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Figure 1:Gin andGout in Multivariate IB formulation.

2.4 Relation with the Multivariate Information Bottleneck

Multivariate Information Bottleneck (IB) [8] is an unsupervised approach for structured data ex-
ploration. Its core lies in combining the Bayesian networksformalism [15] with the Information
Bottleneck method [4]. Multivariate IB searches for a meaningful structured partition of the data,
defined by compression variables (in our case these areC andD). Two graphs,Gin andGout, are
defined. The former specifies the relations between the input(data) variables – in our case,X, Y ,
andZ – and the compression variables. The latter specifies the information terms that are to be
preserved by the partition. A tradeoff between the multi-information preserved in the input struc-
tureIGin (which we want to minimize) and the multi-information expressed by the target structure
IGout (which we want to maximize) is then optimized. For a set of variablesV = V1, .., Vn, a
directed acyclic graph (Bayesian network)G, and a joint probability distribution overV, p(V), the
multi-informationIG(V) is defined as:

IG[p(V)] =

n
∑

i=1

I(Vi;PaG(Vi)),

wherePaG(Vi) are the parents of nodeVi in G.

The graphsGin andGout corresponding to our case are given in Figure 1. (The dashed link between
X andY in Gin appears when missing values are present in the matrix and maybe chosen in any
direction.) The corresponding optimization functional is:

min
q(c|x),q(d|y)

IGin(X;Y ;Z;C;D) − βIGout(X;Y ;Z;C;D)

= min
q(c|x),q(d|y)

I(X;Y ) + I(X,Y ;Z) + I(X;C) + I(Y ;D) − βI(C,D;Z).

By observing thatI(X,Y ;Z) andI(X;Y ) are independent ofq(c|x) andq(d|y) we can eliminate
them from the above optimization and obtain exactly the optimization functional defined in (1), only
with equal weighting ofI(X;C) andI(Y ;D).

Thus the approach may be seen as a special case of the multivariate IB for the graphsGin andGout

defined in Figure 1. An important distinction should be made though: unlike the multivariate IB
we do not require the existence of the joint probability distribution p(x, y, z). This is achieved by
excluding the termI(X,Y ;Z) from the optimization functional.

2.5 Relation with Information Based Clustering

A recent information-theoretic approach for cluster analysis is given in [10], and is known as infor-
mation based clustering, abbreviated asIclust. In contrast to the original IB method,Iclust is equally
applicable to co-occurrence as well as non co-occurrence data. In the following we highlight the re-
lation of our work and this earlier contribution.

By changing the notations used in [10] to those used here we can write the similarity measure
s(x1, x2) used in [10] as:

s(x1, x2) =
∑

z1,z2

∑

y

p(y)p(z1, z2|x1, x2, y) log
p(y)p(z1, z2|x1, x2, y)

∑

y1
p(y1)p(z1|x1, y1)

∑

y2
p(y2)p(z2|x2, y2)



Table 1:Clusters coherence for the ESR and S&P stock datasets. The table provides the coher-
ence of the achieved solutions forNc = 5, 10, 15 and20 row clusters. The results achieved by the
Iclust algorithm at the same settings are shown in brackets alongside the results of our algorithm.
For the ESR data an average coherence according to the three GOs is shown. Separate results for
each GO are provided in the supplementary material1.

Dataset Nc = 5 Nc = 10 Nc = 15 Nc = 20

ESR 69 (79) 53 (49) 50 (52) 42 (42)
S&P 94 (88) 83 (91) 92 (93) 86 (86)

= I(Z1;Z2|x1, x2).

Substituting this in the optimization functional of [10], changing maximization to minimization by
flipping the sign, and substitutingT = 1

β
we obtain:

min
q(c|x)

I(X;C) − β
∑

c

q(c)
∑

x1,x2

q(x1|c)q(x2|c)s(x1, x2)

= min
q(c|x)

I(X;C) − β
∑

c,x1,x2

q(c, x1, x2)I(Z1;Z2|x1, x2),

which is reminiscent of equation (1) if no column (Y ) grouping is done and cluster variance is
measured through pairwise distances and not based on a centroid model.

Importantly, in order to be able to evaluateI(Z1;Z2|x1, x2), I-Clust requires a sufficient amount
of columns to be available, whereas our approach can operatewith any amount of columns given.
Alternately, even when the data contain many columns, but are relatively sparse,i.e., have many
missing values, evaluatingI(Z1;Z2|x1, x2) might be prohibitive as it requires a large enough in-
tersection of non-missing observations forz1 andz2. In our approach it is not a limitation. On
the contrary, the approach is designed to cope with this kindof data and resolves the problem by
simultaneous grouping of rows and columns of the matrix to amplify statistics.

3 Applications

We first compare our algorithm to I-Clust, as it was shown to besuperior/comparable to 18 other
commonly used clustering techniques over a wide range of application domains [10]. We then
describe an experiment on matrix completion. Another application to a small dataset is provided in
the supplementary material1. In the last two cases Iclust is not directly applicable. Themultivariate
IB is not directly applicable to all the provided examples.

3.1 One Dimensional Clustering - Comparison to I-Clust

We focus on two applications reported in [10]. For purposes of comparison we restrict our algorithm
to cluster only the rows dimension of the matrix by setting the number of column clusters,|D|,
equal to the number of columns,m. This simplifies the objective functional defined in equation
(1) to Lmin = I(X;C) − βI(C, Y ;Z). (To have a similar form to [10] we incorporate factorn
multiplying I(X;C) in β.) For both applications we use exactly the same setting as [10], including
row-wise quantization of the input data into five equally populated bins and choosing the same
values for theβ parameter.

The first dataset consists of gene expression levels of yeastgenes in 173 various forms of envi-
ronmental stress [16]. Previous analysis identified a groupof ≈ 300 stress-induced and≈ 600
stress-repressed genes with “nearly identical but opposite patterns of expression in response to the
environmental shifts” [17]. These900 genes were termed the yeast environmental stress response
(ESR) module. Following [10] we cluster the genes into|C| = 5, 10, 15, and20 clusters. To assess

1Supplementary material is available at http://www.cs.huji.ac.il/∼seldin



the biological significance of the results we consider thecoherence [18] of the obtained clusters
with respect to three Gene Ontologies (GOs) [19]. Specifically, the coherence of a cluster is defined
as the percentage of elements within this cluster that are given an annotation that was found to be
significantly enriched in the cluster [18]. The results achieved by our algorithm on this dataset are
comparable to the results achieved by I-Clust in all the verified settings - see Table 1.

The second dataset is the day-to-day fractional changes in the price of the stocks in the Standard &
Poor (S&P) 500 list2, during 273 trading days of 2003. As with the gene expressiondata we take
exactly the same setting used by [10] and cluster the stocks into |C| = 5, 10, 15 and20 clusters. To
evaluate the coherence of the ensuing clusters we use the Global Industry Classification Standard3,
which classifies companies into four different levels, organized in a hierarchical tree: sector, industry
group, industry, and subindustry. As with the ESR dataset our results are comparable with the results
of I-Clust for all the configurations - see Table 1.

3.2 Matrix Completion and Collaborative Filtering

Here, we explore the full power of our algorithm in simultaneous grouping of rows and columns of
a matrix. A highly relevant application is matrix completion - given a matrix with missing values
we would like to be able to complete it by utilizing similarities between rows and columns. This
problem is at the core of collaborative filtering applications, but may also appear in other fields.
We test our algorithm on the publicly available MovieLens 100K dataset4. The dataset consists of
100,000 ratings on a five-star scale for 1,682 movies by 943 users. We take the five non-overlapping
splits of the dataset into 80% train on 20% test size providedat the MovieLens web site. We stress
that with this division the training data are extremely sparse - only 5% of the training matrix entries
are populated, whereas 95% of the values are missing.

To find a “good” bi-clustering of the ratings matrix, minimization ofFmdl defined in (2) is done
by scanning cluster cardinalities|C| and|D| and optimizingLmin as defined in (3) for each fixed
pair of |C|, |D|. The minimum ofFmdl is obtained at|C| ≈ 13 and |D| ≈ 6 with beyond 1%
sensitivity to small changes in|C| and in|D| both inFmdl values and in prediction accuracy. See
supplementary material1 for visualization of the solution at|C| = 4 and|D| = 3.

To measure the accuracy of our algorithm we use mean absoluteerror (MAE) metrics, which
is commonly used for evaluation on this dataset [11]. The mean absolute error is defined as:
MAE = 1

N

∑N

i=1 |zi − ri|, wherezi-s are the predicted andri-s are the actual ratings. To convert
the distributionŝq(z|c, d) we obtained in our clustering procedure to concrete predictions we take
the median ofz values within each sectionc, d.

Note that our algorithm is general and does not directly optimize the MAE error functional. Nev-
ertheless we obtain 0.72 MAE (with a deviation of less than 0.01 over multiple experiments). This
confidently beats the “magic barrier” of 0.73 reported in thecollaborative filtering literature [11].

The root mean squared error (RMSE) measured for the same clustering with a mean ofz values
within each sectionc, d taken for prediction yields 0.96 (with a deviation below 0.01). This is much
better than 1.165 RMSE reported for a dataset 20 times larger[20] and quite close to 0.9525 RMSE
reported by Netflix for a dataset 1000 times larger of a similar nature5.

4 Discussion

A new model independent approach to the analysis of data given in the form of samples of a function
Z(X,Y ) rather than samples of co-occurrence statistics ofX andY is introduced. From a theo-
retical viewpoint the approach is a much required extensionof the Information Bottleneck method
that allows for its application to entirely new domains. Theapproach also provides a natural way for
bi-clustering and matrix completion. From a practical viewpoint the major contribution of the paper
is the achievement of the best known results for a wide range of applications with a single algorithm.
As well, we improve on the results of prediction of missing values (collaborative filtering).

2Available at http://www.standardpoors.com
3Available at http://wrds.wharton.upenn.edu
4Available at http://www.grouplens.org
5See http://www.netflixprize.com/rules



Possible directions for further research include generalization to continuous data values, such as
those obtained in gene expression and stock price data, and relaxation of the algorithm to “soft”
clustering solutions. Another interesting extension would be to dimensionality reduction, rather
than clustering, as occurs in IB when applied to continuous variables [21].

The proposed framework also provides a natural platform forderivation of generalization bounds
for missing values prediction that will be discussed elsewhere.
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